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Fredholm Integral Equations

An equation of the form

α (x) y (x) = f (x) + λ

∫ b

a
K (x , t) y (t) dt, (1)

where α, f ,K are given functions and λ, a, b are constants, is known as a

Fredholm integral equation.

The function y (x) is an unknown function to be determined.

When f ≡ 0, the equation (1) is called a homogeneous Fredholm

integral equation.
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Fredholm Integral Equations

The given function K (x , t) , which depends upon the variables x and t, is

known as the kernel of the integral equation.

when α ≡ 0, equation (1) is known as a Fredholm integral equation

of the first kind.

when α ≡ 1, the equation (1) is known as a Fredholm integral

equation of the second kind.

when α is a given function of x (not a constant function), then the

equation (1) is known as a Fredholm integral equation of the third

kind.
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Fredholm Integral Equations

In general, when the function α (x) is positive throughout the interval

(a, b) , the equation (1) can be re-written in an equivalent form

√
α (x) y (x) =

f (x)√
α (x)

+ λ

∫ b

a

K (x , t)√
α (x)α (t)

√
α (t) y (t) dt,

hence equation (1) can be considered an Fredholm integral equation of the

second kind in the unknown function
√
α (x) y (x), with a modified kernel.

That is, if α has same sign in the integral (a, b), one can convert

Fredholm integral equation of the third kind to second kind.
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Separable or Degenerate Kernel (Simple Case)

A kernel K (x , t) is called separable or degenerate if it can be expressed

as the sum of a finite number of terms, each of which is the product of a

function of x only and a function of t only. That is,

K (x , t) =
n∑

i=1

ai (x) bi (t) ,

where the functions a1 (x) , a2(x), . . . , an (x) and the functions

b1 (t) , b2(t), . . . , bn (t) are linearly independent.
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Fredholm Integral Equations (with separable kernel)

With this kernel, the Fredholm integral equation of the second kind,

y (x) = f (x) + λ

∫ b

a
K (x , t) y (t) dt (2)

becomes

y (x) = f (x) + λ

n∑
i=1

ai (x)

∫ b

a
bi (t) y (t) dt. (3)

Substituting ci =

∫ b

a
bi (t) y (t) dt in (2), we have a solution given by the

formula

y (x) = f (x) + λ

n∑
i=1

ciai (x) , (4)

and the problem is reduced to finding the ci .
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Fredholm Integral Equations

Substituting (4) in (3), we get

y (x) = f (x) + λ

n∑
i=1

ai (x)

∫ b

a
bi (t)

{
f (t) + λ

n∑
k=1

ckak (t)
}
dt.

Equating the above equation with the solution given by the formula (4),
we get

f (x) + λ
n∑

i=1

ciai (x) = f (x) + λ
n∑

i=1

ai (x)

∫ b

a
bi (t)

{
f (t) + λ

n∑
k=1

ckak (t)
}

dt.

=⇒
n∑

i=1

ai (x)

{
ci −

∫ b

a
bi (t)

{
f (t) + λ

n∑
k=1

ckak (t)
}
dt

}
= 0.
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Fredholm Integral Equations

Since functions ai (x) are linearly independent; therefore

ci −
∫ b

a
bi (t)

{
f (t) + λ

n∑
k=1

ckak (t)
}
dt = 0, i = 1, . . . , n. (5)

Denoting ∫ b

a
bi (t) f (t) dt = fi ,

∫ b

a
bi (t) ak (t) dt = aik , (6)

where fi and aik are known constants, equation (5) becomes

ci − fi − λ
n∑

k=1

aikck = 0, i = 1, . . . , n

and hence

ci − λ
n∑

k=1

aikck = fi , i = 1, . . . , n. (7)
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Fredholm Integral Equations

For i = 1, 2, . . . , n, we have a system of n algebraic equations for the
unknowns ci .

c1 − λc1a11 − λc2a12 − · · · − λcna1n = f1

c2 − λc1a21 − λc2a22 − · · · − λcna2n = f2

... −
... −

... −
... −

... =
...

cn − λc1an1 − λc2an2 − · · · − λcnann = fn

=⇒


1− λa11 −λa12 . . . −λa1n
−λa21 1− λa22 . . . −λa2n

...
...

...
...

−λan1 1− λan2 . . . 1− λann



c1

c2
...

cn

 =


f1

f2
...

fn

 (8)

=⇒ (1− λA)C = F .
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Case : f ≡ 0

Recall that y (x) = f (x) + λ
∑n

i=1 ciai (x) .

If the function f (x) is identically zero, (it is the homogeneous Fredholm

integral equation), so each fi = 0 and hence, F = 0. Moreover,

1. c1 = c2 = · · · = cn = 0 when det(I − λA) 6= 0. Hence the equation

possesses the trivial solution y ≡ 0 (unique solution).

2. However, if det(I − λA) = 0, at least one of the ci ’s can be assigned

arbitrarily, and the remaining cj ’ s can be accordingly determined. In

this cases, infinitely many solutions of the integral equation exist.

Inverses of those values of λ for which det(I − λA) = 0 are known as

eigenvalues and any nontrivial solution of the homogeneous integral

equation is called a corresponding eigenfunction.
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Case : f 6≡ 0 but f is orthogonal to each bi , i = 1, 2, . . . , n

Recall that y (x) = f (x) + λ
∑n

i=1 ciai (x) .

If the function f (x) is not identically zero and f is orthogonal to each bi ,

i = 1, 2, . . . , n, so each fi = 0 and hence, F = 0. Moreover,

1. c1 = c2 = · · · = cn = 0 when det(I − λA) 6= 0. Hence the equation

possesses the unique solution y(x) = f (x).

2. However, if det(I − λA) = 0, at least one of the ci ’s can be assigned

arbitrarily, and the remaining cj ’ s can be accordingly determined. In

this cases, infinitely many solutions of the integral equation exist.
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Case : f 6≡ 0 and some bi is not orthogonal to f

If the function f (x) is not identically zero and some bi (i = 1, 2, . . . n) is

not orthogonal to f , then

1. The equation possesses unique solution, C = (I − λA)−1F when

det(I − λA) 6= 0.

2. Suppose det(I − λA) = 0. There are two cases :

(a) there is no solution if rank(I − λA) and rank{(I − λA | F )} are

different.

(b) there are infinitely many solutions if rank(I − λA) and

rank{(I − λA | F )} are the same.
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Fredholm Integral Equations

Example 1.

Solve the Fredholm integral equation of the second kind

y(x) = x + λ

∫ 1

0
(xt2 + x2t) y(t) dt. (9)

Solution: The kernel k(x , t) = xt2 + x2t is separable and we can set

c1 =

∫ 1

0
t2 y(t)dt, c2 =

∫ 1

0
t y(t)dt,

Then (9) becomes

y(x) = x + λc1x + λc2x
2.
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Fredholm Integral Equations

On putting this value in c1 and c2, we obtain

c1 =
1

4
+

1

4
λc1 +

1

5
λc2,

c2 =
1

3
+

1

3
λc1 +

1

4
λc2.

Now, after finding the values of c1 and c2, we get the solution

y(x) = x + λc1x + λc2x
2

=
240x − 60λx + 80λx2

240− 120λ− λ2
.
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Fredholm Integral Equations

Example 2.

Solve the integral equation

y(x) = λ

∫ 1

0
(3x − 2)t y(t)dt. (10)

Solution: Note that the given equation is a homogeneous Fredholm

integral equation.

Let

c =

∫ 1

0
t y(t)dt.

Then (10) is reduced to

y(x) = λc(3x − 2).
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Fredholm Integral Equations

We obtain

c =

∫ 1

0
λct(3t − 2)dt = λ

∫ 1

0
(3t2 − 2t) dt = 0,

hence y(x) = 0, which is a zero solution. Therefore, the given integral

equation does not possess any eigenvalue or eigenfunction.

Note that here A is the zero matrix and det(I − λA) = 1 6= 0.

P. Sam Johnson Some Results and Examples on Fredholm Alternative 17/84



Fredholm Integral Equations

Example 3.

Consider the differential equation

y(x) = f (x) + λ

∫ 1

0
(1− 3xt) y(t)dt.

This equation can be written in the form

y(x) = f (x) + λ(c1 − 3c2x)

where c1 =

∫ 1

0
y(t)dt and c2 =

∫ 1

0
t y(t)dt.
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Fredholm Integral Equations

On solving, we get

c1 = λ(c1 −
3

2
c2) +

∫ 1

0
f (t) dt,

c2 = λ(
1

2
c1 − c2) +

∫ 1

0
tf (t)dt,

or

(1− λ)c1 +
3

2
λc2 =

∫ 1

0
f (t)dt,

−1

2
λc1 + (1 + λ)c2 =

∫ 1

0
tf (t)dt.
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Fredholm Integral Equations

The determinant of (I − λA) is given by

D(λ) =
4− λ2

4
.

It follows that a unique solution exists if and only if

λ 6= ±2.
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Fredholm Integral Equations

Suppose f ≡ 0. There are two cases:

1. If λ 6= ±2 (determinant is non-zero), the only solution is the trivial

solution y(x) = 0.

2. If λ = ±2, we have a non-zero solution. Then ±1/2 are the eigen

values of A.
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Fredholm Integral Equations

If λ = +2, the system is reduced to

−c1 + 3c2 =

∫ 1

0
f (t) dt,

−c1 + 3c2 =

∫ 1

0
tf (t) dt.

The system is compatible only if the function f (x) satisfies the condition∫ 1

0
f (t)dt =

∫ 1

0
tf (t)dt or

∫ 1

0
(1− t)f (t)dt = 0.

If the above condition is satisfied, the corresponding system is consistent,

hence the integral has a solution.
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Fredholm Integral Equations

If λ = −2, the system is reduced to

c1 − c2 =
1

3

∫ 1

0
f (t) dt,

c1 − c2 =

∫ 1

0
tf (t)dt.

The system is compatible only if the function f (x) satisfies the condition

1

3

∫ 1

0
f (t)dt =

∫ 1

0
tf (t)dt or

∫ 1

0
(1− 3t)f (t)dt = 0.

If the above condition is satisfied, the corresponding system is consistent,

hence the integral has a solution.
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Fredholm Integral Equations

First let us consider the case when f (x) = 0.

If λ 6= ±2, the only solution is the trivial solution.

If λ = 2, the system gives c1 = 3c2. Thus the solution is

y(x) = 2c1(1− x) = c(1− x)

where c is an arbitrary constant. The function (1− x) and all its non-zero

multiples are the eigen function corresponding to the eigen value λ = 1/2.
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Fredholm Integral Equations

If λ = −2, the system gives c1 = c2. Thus the solution is

y(x) = 2c1(1− 3x) = d(1− 3x)

where d is an arbitrary constant.

The function (1− 3x) and all its non-zero multiples are the eigen function

corresponding to the eigen value λ = −1/2.
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Fredholm Integral Equations

In the non-homogeneous case, f (x) 6= 0, a unique solution exists if

λ 6= ±2.

If λ = 2, the algebraic system shows that no solution exists unless f (x) is

orthogonal to 1− x over the interval (0, 1) , i.e., unless f (x) is orthogonal

to the eigen function corresponding to λ = 2.

If f satisfies the orthogonality condition, then both linear equations are

equivalent. Hence we obtain

c1 = 3c2 −
∫ 1

0
f (t) dt,
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Fredholm Integral Equations

That gives the solution as follows:

λ = 2 : y (x) = f (x)− 2

∫ 1

0
f (t) dt + c (1− x)

when ∫ 1

0
(1− x) f (x) dx = 0. (11)

where c is an arbitrary constant. Thus in this case, infinitely many

solutions exist, differing by a multiple of relevant eigen function.
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Fredholm Integral Equations

Similarly, if λ = −2 there is no solution unless f (x) is orthogonal to

(1− 3x) over (0, 1) in which case infinitely many solutions exist as follows:

λ = −2 : y (x) = f (x)− 2

3

∫ 1

0
f (t) dt + d (1− 3x) ,

where ∫ 1

0
(1− 3x) f (t) dt = 0 (12)

where d is an arbitrary constant.
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Fredholm Integral Equations

Example 4.

Discuss solution of the integral equation

y(x) = f (x) + λ

∫ 2π

0
sin(x + t) y(t)dt

and show that the integral equation

y(x) = f (x) +
1

π

∫ 2π

0
sin(x + t) y(t)dt

has no solution when f (x) = x , and

has infinitely many solutions when f ≡ 1.
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Fredholm Integral Equations

Here K (x , t) = sin(x + t) = sin x cos t + cos x sin t.

The corresponding matrix equation (I − λA)C = F becomes

(
1 −λπ
−λπ 1

)(
c1

c2

)
=


∫ 2π

0
cos t f (t) dt∫ 2π

0
sin t f (t) dt

 .

Also, det(I − λA) = 1− λ2π2.

When det(I − λA) 6= 0, the integral equation has a unique solution.

When det(I − λA) = 0, that is, λ = ±1/π, the given integral equation will

either have no solution or have infinitely many solutions.
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Fredholm Integral Equations

Now we first solution to the homogeneous integral equation

y(x) = λ

∫ 2π

0
sin(x + t) y(t)dt.

The corresponding algebraic system is

c1 − λπc2 = 0

−λπc2 + c2 = 0.

When λ = 1/π, we obtain c1 = c2, and hence

y(x) = c(sin x + cos x), where c is an arbitrary constant.

When λ = −1/π, we obtain c1 = −c2, and hence

y(x) = d(sin x − cos x), where d is an arbitrary constant.
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Fredholm Integral Equations

Recall that

(
1 −λπ
−λπ 1

)(
c1

c2

)
=


∫ 2π

0
cos t f (t) dt∫ 2π

0
sin t f (t) dt

 .

When λ = 1/π, necessary condition for the system

(
1 −1

−1 1

)(
c1

c2

)
=


∫ 2π

0
cos t f (t) dt∫ 2π

0
sin t f (t) dt

 .

to be consistent is that∫ 2π

0
f (t) (sin t + cos t) dt = 0.
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Fredholm Integral Equations

When λ = −1/π, necessary condition for the system

(
1 1

−1 −1

)(
c1

c2

)
=


∫ 2π

0
cos t f (t) dt∫ 2π

0
sin t f (t) dt

 .

to be consistent is that∫ 2π

0
f (t) (sin t − cos t) dt = 0.
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Observations

The given integral equation

y(x) = f (x) +
1

π

∫ 2π

0
sin(x + t) y(t)dt

1. has no solution when f (x) = x because∫ 2π

0
f (t) (sin t − cos t) dt 6= 0.

2. has infinitely many solutions when f ≡ 1 because∫ 2π

0
f (t) (sin t − cos t) dt = 0.
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Observations

Thus the integral equation will possess infinitely many solutions given by

y(x) = 1 + c(sin x + cos x) + d(sin x − cos x).

That is,

y(x) = 1 + A cos x + B sin x ,

where A and B are arbitrary constants.
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Part - 2

Solution of the Integral Equation

Using Functional Analysis Techniques
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Solution of the Integral Equation Using Functional Analysis

Techniques

Let v(t) and w(t) be continuous functions on [a, b].

Consider an integral equation of the form

x(t) = y(t) + v(t)

∫ b

a
w(s) x(s) ds. (13)

This integral equation comes up frequently in applications.

We shall first discuss a method to solve the integral equation which leads

to a result.
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Overview

The discussion of solving the integral equation is useful to generalize the

result, even for compact operators on normed spaces.

The generalized result is given as follows and is called “Fredholm

Alternative”. At the end of the lecture, we shall prove the generalized

result.

Theorem 5 (Fredholm Alternative).

Let X be a Banach space and let K be an operator in K (X ). Set

A = I − K . Then, R(A) is closed in X and dimN(A) = dimN(A∗) is

finite. In particular, either R(A) = X and N(A) = {0}, or R(A) 6= X and

N(A) 6= {0}.

P. Sam Johnson Some Results and Examples on Fredholm Alternative 38/84



Solution of the Integral Equation

Let v(t) and w(t) be continuous functions on [a, b].

Consider an integral equation of the form

x(t) = y(t) + v(t)

∫ b

a
w(s) x(s) ds. (14)

Let X = C [a, b], with sup-norm.

For a given continuous function y(t) on [a, b], the problem is to find

a solution x(t) in X .
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Solution of the Integral Equation

Define x∗w : X → K by

x∗w (x) =

∫ b

a
w(s) x(s) ds. (15)

As |x∗w (x)| ≤ c‖x‖∞, where c =
∫ b
a |w(s)| ds, hence x∗w ∈ X ∗.

We are now having an element v in X and x∗w in X ∗ and K : X → X is an

operator on X defined by

(Kx)(t) = x∗w (x) v(t) (16)

for the operator equation

x = y + Kx . (17)

Exercise 6.

Show that K is a linear bounded, rank-one operator.
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Solution of the Integral Equation

Now clearly, in order to solve

x = y + Kx ,

it suffices to find Kx , that is, to find the scalar x∗w (x).

Since x = y + Kx , x∗w (x) = x∗w (y) + x∗w (Kx) implies

x∗w (x)[1− x∗w (v)] = x∗w (y). (18)
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Case 1 : when x∗w(v) 6= 1

When x∗w (v) 6= 1,

x∗w (x) =
x∗w (y)

1− x∗w (v)
hence Kx =

x∗w (y)

1− x∗w (v)
v .

Thus if x∗w (v) 6= 1, we have a solution

x(t) = y(t) +
x∗w (y)

1− x∗w (v)
v(t).
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Case 1 : when x∗w(v) 6= 1

Concerning uniqueness, we see from that x∗w (x)[1− x∗w (v)] = x∗w (y) if

y = 0, then x∗w (x) = 0, and hence, so x = 0.

Hence the unique solution of the given integral equation is

x(t) = y(t) +

∫ b
a w(s) y(s) ds

1−
∫ b
a w(s) v(s) ds

v(t)

provided
∫ b
a w(s) v(s) ds 6= 1.

Note that there is no condition on y when there is a unique solution. But

the condition is that the image of v under x∗w is not equal to 1.
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Case 2 : when x∗w(v) = 1

Suppose x∗w (v) = 1.

By the equation x∗w (x)[1− x∗w (v)] = x∗w (y) we get that x∗w (y) = 0, in

order that the given integral equation has a solution.

So let us assume that

x∗w (y) =

∫ b

a
w(s) y(s) ds = 0

then x∗w (x) can be any scalar, so that the equation

x = y + Kx = y + x∗w (x)v

has many solutions provided x∗w (y) = 0.
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Rank-One Operator

We discussed solutions of the integral equation of the form

x(t) = y(t) + v(t)

∫ b

a
w(s) x(s) ds (19)

where y(t) and v(t) are given continuous functions on [a, b].

The discussion leads to the following result.

Theorem 7.

Let X be a normed space and let A = I − K , where K is of the form

Kx = x∗1 (x)x1

where x1 is a given element of X and x∗1 is a given element of X ∗.

If N(A) = {0}, then R(A) = X . Otherwise, R(A) is closed in X , and

N(A) if finite dimensional having the same dimension as N(A∗). FA-1(P-1)T-1
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Outline of the proof

If x∗1 or x1 is zero, the proof is obvious. Hence we assume that both are

non-zero.

In order to solve

Ax = x − Kx = y ,

it suffices to find Kx , that is, to find the scalar x∗1 (x).

Since x = y + Kx , x∗1 (x) = x∗1 (y) + x∗1 (Kx) implies

x∗1 (x)[1− x∗1 (x1)] = x∗1 (y).
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Case 1 : When x∗1 (x1) 6= 1, what is N(A) ?

Suppose x ∈ N(A). Then x = Kx , so

x = αx1 for some α.

Now, we have

αx1 = x = Kx = K (αx1) = αx∗1 (x1)x1

implies

α
[
1− x∗1 (x1)

]
x1 = 0.

Since x∗1 (x1) 6= 1, α must be zero. Thus N(A) = {0} so A is one-to-one.
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Case 1 : When x∗1 (x1) 6= 1, what is R(A) ?

When x∗1 (x1) 6= 1,

x∗1 (x) =
x∗x (y)

1− x∗1 (x1)
hence Kx =

x∗1 (y)

1− x∗1 (x1)
x1.

Hence if x∗1 (x1) 6= 1, we have a solution

x = y +
x∗1 (y)

1− x∗1 (x1)
x1.

For any y ∈ X , if x∗1 (x1) 6= 1, then there is a unique solution x for the

operator equation

Ax = y .

Thus R(A) = X so A is onto.
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Case 1 : When x∗1 (x1) 6= 1, what is N(A∗) ?

We use I to denote the identity operator on X ∗ as well. By the definition

of adjoint of K ,

(K ∗x∗)(x) = x∗(Kx)

= x∗w (x)x∗w (v).

Suppose x∗ ∈ N(A∗). Then x∗ = K ∗x∗, so

x∗ = βx∗1 for some β.

Now, we have

βx∗1 = x∗ = K ∗x∗ = K ∗(βx∗1 ) = βx∗(x1)x∗1

implies

β
[
1− x∗1 (x1)

]
x∗1 = 0.

Since x∗1 (x1) 6= 1, β must be zero. Thus N(A∗) = {0} so A∗ is one-to-one.
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Case 2 : When x∗1 (x1) = 1, what is N(A) ?

Suppose x ∈ N(A). Then x = Kx , so

x = αx1 for some α.

Now, we have

αx1 = x = Kx = K (αx1) = αx∗1 (x1)x1

implies

α
[
1− x∗1 (x1)

]
x1 = 0.

Since x∗1 (x1) = 1, α can be any scalar. Thus N(A) = span{x1}.
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Case 2 : When x∗1 (x1) = 1, what is R(A) ?

Let y ∈ X .

In order to solve

Ax = x − Kx = y ,

it suffices to find Kx , that is, to find the scalar x∗1 (x).

Since x = y + Kx , x∗1 (x) = x∗1 (y) + x∗1 (Kx) implies

x∗1 (x)[1− x∗1 (x1)] = x∗1 (y).

If x∗1 (x1) = 1, then x∗1 (y) has to be zero.

To have a solution for Ax = y , the element y cannot be an arbitrary

element in X , but it has to satisfy that x∗1 (y) = 0. In this case, x∗1 (x) is

chosen to be any scalar, hence there are several solutions for y .
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Case 2 : When x∗1 (x1) = 1, what is R(A) ?

In other words, we can solve Ax = y only for those y in the set

{y : x∗1 (y) = 0} = ⊥{x∗1}
[
the annihilator of {x∗1}

]
.

Hence ⊥{x∗1} ⊆ R(A).

On the other hand, let y ∈ R(A), then y = Ax for some x ∈ X . As

x∗1 (x1) = 1 and Ax = y has a solution, then y ∈⊥ {x∗1}.

Thus

R(A) = ⊥{x∗1}.
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Case 2 : When x∗1 (x1) = 1, what is N(A∗) ?

We use I to denote the identity operator on X ∗ as well. By the definition

of adjoint of K ,

(K ∗x∗)(x) = x∗(Kx) = x∗w (x)x∗w (v).

Suppose x∗ ∈ N(A∗). Then x∗ = K ∗x∗, so x∗ = βx∗1 , for some β.

Now, we have

βx∗1 = x∗ = K ∗x∗ = K ∗(βx∗1 ) = βx∗(x1)x∗1

implies

β
[
1− x∗1 (x1)

]
x∗1 = 0.

Since x∗1 (x1) = 1, β can be any scalar. Thus N(A∗) = span{x∗1}.
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Finite Rank Operator

Next we consider an operator of finite rank. Let the operator K be of the

form

Kx =
n∑

j=1

x∗j (x)xj , xj ∈ X , x∗j ∈ X ∗.

Theorem 8.

Let X be a normed space, and let K be an operator of finite rank on X .

Set A = I − K . Then R(A) is closed in X , and the dimensions of N(A)

and N(A∗) are finite and equal. FA-1(P-3)T-2
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Proof

Let {x1, x2, . . . , xn} be a basis for R(K ). For x ∈ R(K ), we have

x =
n∑

j=1

αjxj

for some scalars α1, α2, . . . , αn (depending on Kx). Let’s write

x =
n∑

j=1

αj(Kx)xj .

We first claim that any bounded finite rank operator K : X → X is of the

form

Kx =
n∑

j=1

x∗j (x)xj , for some xj ∈ X , x∗j ∈ X ∗.
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Proof (contd...)

Let x ∈ X . Since {x1, x2, . . . , xn} is a basis for R(K ), so

x =
n∑

j=1

αj(Kx)xj .

Since R(K ) is finite dimensional, the norms on R(K ) are equivalent.

In particular, ‖Kx‖ :=
∑n

j=1 |αi (Kx)| and ‖Kx‖ are equivalent.

Hence there exists a constant C > 0 such that

n∑
j=1

|αj(Kx)| ≤ C‖Kx‖.
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Proof (contd...)

Since K is bounded,
n∑

j=1

|αj(Kx)| ≤ C‖Kx‖ ≤ C‖K‖.‖x‖,

so αj is a bounded linear functional on R(K ).

By Hahn-Banach Theorem, there are functionals x∗j ∈ X ∗ such that

αj(x) = x∗j (x), for all x ∈ X .

Hence K : X → X is of the form

Kx =
n∑

j=1

x∗j (x)xj , for some xj ∈ X , x∗j ∈ X ∗.

We may take xj and x∗j are linearly independent in the expression. When

they are not linearly independent, combine them.
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Proof (contd...)

By the definition of adjoint of K , K ∗ is of the form

K ∗x∗ =
n∑

k=1

x∗(xk)x∗k .
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Case 1 : What is N(A) ?

Suppose x ∈ N(A). Then x = Kx , so x =
∑n

j=1 αjxj , for some scalars

α1, α2, . . . , αn.
n∑

j=1

αjxj = x = Kx =
n∑

j=1

x∗j (x)xj =
n∑

j=1

x∗j

( n∑
k=1

αkxk

)
xj

which implies that
n∑

j=1

{
αj −

n∑
k=1

αkx
∗
j (xk)

}
xj = 0. Since {x1, x2, . . . , xn}

is linearly independent, for each j = 1, 2, . . . , n, we have

αj −
∑n

k=1 αkx
∗
j (xk) = 0. Hence

1− x∗1 (x1) −x∗1 (x2) · · · −x∗1 (xn)

−x∗2 (x1) 1− x∗2 (x2) · · · −x∗2 (xn)
...

... · · ·
...

−x∗n (x1) −x∗n (x2) · · · 1− x∗n (xn)




α1

α2

...

αn

 =


0

0
...

0

 .
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Case 1 : When det ∆ 6= 0, what is N(A) ?

Let

∆ =


1− x∗1 (x1) −x∗1 (x2) · · · −x∗1 (xn)

−x∗2 (x1) 1− x∗2 (x2) · · · −x∗2 (xn)
...

... · · ·
...

−x∗n (x1) −x∗n (x2) · · · 1− x∗n (xn)

 .

We have,

∆


α1

...

αn

 =


0
...

0

 .

Since det ∆ 6= 0, we must have all αj ’s are zero. Thus N(A) = {0} so A is

one-to-one.
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Case 1 : When det ∆ 6= 0, what is N(A∗) ?

Suppose x∗ ∈ N(A∗). Then x∗ = K ∗x∗, so x∗ =
∑n

j=1 βjxj , for some

scalars β1, β2, . . . , βn.

n∑
j=1

βjx
∗
j = x∗ = K ∗x∗ =

n∑
j=1

x∗(xj)x
∗
j =

n∑
j=1

( n∑
k=1

βkx
∗
k

)
(xj)x

∗
j

which implies that

n∑
j=1

{
βj −

n∑
k=1

βkx
∗
k (xj)

}
x∗j = 0.

Since {x∗1 , x∗2 , . . . , x∗n} is linearly independent, for each j = 1, 2, . . . , n,

βj −
n∑

k=1

βkx
∗
k (xj) = 0.
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Case 1 : When det ∆ 6= 0, what is N(A∗) ?

Hence we have,

∆T


β1
...

βn

 =


0
...

0

 .

Since det ∆ 6= 0, we must have all βj ’s are zero. Thus N(A∗) = {0} so A∗

is one-to-one.
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Case 1 : When det ∆ 6= 0, what is R(A) ?

Given y ∈ X . Suppose x is a solution of Ax = y .

Then

x −
n∑

k=1

x∗k (x)xk = y .

In order to solve

Ax = x − Kx = y ,

it suffices to find Kx , that is, to find the scalars x∗1 (x), x∗2 (x), . . . , x∗n (x).

For each j , 1 ≤ j ≤ n,

x∗j (x)−
n∑

k=1

x∗k (x)x∗j (xk) = x∗j (y).
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Case 1 : When det ∆ 6= 0, what is R(A) ?

This implies that
n∑

k=1

{
δjk − x∗j (xk)

}
x∗k (x) = x∗j (y), 1 ≤ j ≤ n.

Hence

∆


x∗1 (x)

...

x∗n (x)

 =


x∗1 (y)

...

x∗n (y)

 .

If det ∆ 6= 0, the above system has a unique solution for x∗k (x), 1 ≤ k ≤ n,

and the solution x is unique because

x = y +
n∑

k=1

x∗k (x)xk .

Every y ∈ X has a unique solution. Hence A is surjective.
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Case 1 : When det ∆ = 0, what is N(A) ?

Suppose x ∈ N(A). Then x = Kx , so x =
∑n

j=1 αjxj , for some scalars

α1, α2, . . . , αn.
n∑

j=1

αjxj = x = Kx =
n∑

j=1

x∗j (x)xj =
n∑

j=1

x∗j

( n∑
k=1

αkxk

)
xj

which implies that
n∑

j=1

{
αj −

n∑
k=1

αkx
∗
j (xk)

}
xj = 0. Since {x1, x2, . . . , xn}

is linearly independent, for each j = 1, 2, . . . , n, we have

αj −
∑n

k=1 αkx
∗
j (xk) = 0. Hence

1− x∗1 (x1) −x∗1 (x2) · · · −x∗1 (xn)

−x∗2 (x1) 1− x∗2 (x2) · · · −x∗2 (xn)
...

... · · ·
...

−x∗n (x1) −x∗n (x2) · · · 1− x∗n (xn)




α1

α2

...

αn

 =


0

0
...

0

 .
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Case 1 : When det ∆ = 0, what is N(A) ?

We have,

∆


α1

...

αn

 =


0
...

0

 .

Since det ∆ = 0, we must have some non-zero solutions for αj ’s. Note

that N(A) ⊆ Span {x1, x2, . . . , xn}.

If the rank of ∆ is ` < n, then there are n − ` linearly independent

solutions. Thus A is not one-to-one and the dimension of N(A) = n − `.
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Case 1 : When det ∆ = 0, what is N(A∗) ?

Suppose x∗ ∈ N(A∗). Then x∗ = K ∗x∗, so x∗ =
∑n

j=1 βjxj , for some

scalars β1, β2, . . . , βn.

n∑
j=1

βjx
∗
j = x∗ = K ∗x∗ =

n∑
j=1

x∗(xj)x
∗
j =

n∑
j=1

( n∑
k=1

βkx
∗
k

)
(xj)x

∗
j

which implies that

n∑
j=1

{
βj −

n∑
k=1

βkx
∗
k (xj)

}
x∗j = 0.

Since {x∗1 , x∗2 , . . . , x∗n} is linearly independent, for each j = 1, 2, . . . , n,

βj −
n∑

k=1

βkx
∗
k (xj) = 0.
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Case 1 : When det ∆ = 0, what is N(A∗) ?

Hence we have,

∆T


β1
...

βn

 =


0
...

0

 .

Since det ∆ = det ∆T = 0, we must have some non-zero solutions for βj ’s.

Note that N(A∗) ⊆ Span {x∗1 , x∗2 , . . . , x∗n}.

If the rank of ∆T is ` < n, then there are n − ` linearly independent

solutions. Thus A∗ is not one-to-one and the dimension of N(A∗) = n − `.
Note that ranks of ∆ and ∆T are the same.
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Case 1 : When det ∆ = 0, what is R(A) ?

Given y ∈ X . Suppose x is a solution of Ax = y .

Then

x −
n∑

k=1

x∗k (x)xk = y .

In order to solve

Ax = x − Kx = y ,

it suffices to find Kx , that is, to find the scalars x∗1 (x), x∗2 (x), . . . , x∗n (x).

For each j , 1 ≤ j ≤ n,

x∗j (x)−
n∑

k=1

x∗k (x)x∗j (xk) = x∗j (y).
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Case 1 : When det ∆ = 0, what is R(A) ?

This implies that
n∑

k=1

{
δjk − x∗j (xk)

}
x∗k (x) = x∗j (y), 1 ≤ j ≤ n.

Hence

∆


x∗1 (x)

...

x∗n (x)

 =


x∗1 (y)

...

x∗n (y)

 . (20)

If det ∆ = 0, the above system (20) has many solution for

x∗k (x), 1 ≤ k ≤ n, and the solution x is not unique because

x = y +
n∑

k=1

x∗k (x)xk .
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Case 1 : When det ∆ = 0, what is R(A) ?

If det ∆ = 0, the above system (20) has many solution for

x∗k (x), 1 ≤ k ≤ n. How to find these solutions?

We recall a theorem (Linear Algebra, by A. Ramachandra Rao and P.

Bhimasankaram, page 189) stated as follows:

Theorem 9.

The system Ax = b is consistent iff

ATu = 0 =⇒ bTu = 0.
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Case 1 : When det ∆ = 0, what is R(A) ?

In this case, (20) can be solved for those y which satisfy

∆T


α1

...

αn

 = 0

implies [
x∗1 (y) x∗2 (y) · · · x∗n (y)

]
α1

...

αn

 = 0.

That is, (20) can be solved for those y which satisfy

n∑
j=1

αjx
∗
j (y) = 0

whenever
n∑

j=1

[
δjk − x∗j (xk)

]
αj = 0, 1 ≤ k ≤ n.
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Case 1 : When det ∆ = 0, what is R(A) ?

Now we claim that R(A) is closed.
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Operators “close” to operators of finite rank

We now think about operators which are “close” to operators of finite

rank such that

‖Kn − K‖ → as n→∞.

Theorem 10.

Let X be a Banach space, and assume that K ∈ B(X ) is the limit in norm

of a sequence of operators of finite rank. If A = I − K , then R(A) is

closed in X , and dimN(A) = dimN(A∗) <∞. FA-1(P-12)T-3
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What kind of operators are the limits in norm of operators

of finite rank?

If X is a Hilbert space, every compact operator is a limit in norm of

operators of finite rank.

Also, every compact operator on many well-known Banach spaces, is a

limit in norm of operators of finite rank.

If X is a Banach space, the hypotheses of the Theorem (10) may not be

fulfilled for some K ∈ K (X ). However, we are going to show that,

nevertheless, the conclusion is true.
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Operators “close” to compact operators

Theorem 11.

Let X be a normed space and Y a Banach space. If L is in B(X ,Y ) and

there is a sequence {Kn} ⊆ K (X ,Y ) such that

‖L− Kn‖ → as n→∞

then L is in K (X ,Y ).
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Fredholm alternative

Theorem 12 (Fredholm alternative).

Let X be a Banach space and let K be an operator in K (X ). Set

A = I − K .

Then, R(A) is closed in X and dimN(A) = dimN(A∗) is finite.

In particular, either

R(A) = X and N(A) = {0}

or

R(A) 6= X and N(A) 6= {0}.

FA-1(P-14)T-4
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Fredholm alternative

To prove the theorem, we need the following results : Let X ,Y be Banach

spaces.

1. If A ∈ B(X ,Y ) with R(A) = Y ,N(A) = {0}. Then A−1 ∈ B(X ,Y ).

2. If ‖A‖ < 1, then I − A is invertible.

3. If A ∈ B(X ,Y ), then R(A) is closed if and only if there exists C > 0

such that

d(x ,N(A)) ≤ C‖Ax‖, for all x ∈ X .

4. If A is a linear operator from X to Y , then for each x in X and ε > 0,

there is an element x0 in X such that

Ax0 = Ax , d(x0,N(A)) = d(x ,N(A))

and

d(x ,N(A)) ≤ ‖x0‖ ≤ d(x ,N(A)) + ε.
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Fredholm alternative

4. Let M be a proper closed subspace of a normed space X . Then for

each number r satisfying 0 < r < 1 there is an element xr ∈ X such

that

‖xr‖ = 1 and d(x ,M) ≥ r .

5. Let M be a subspace of a normed space X , and suppose that x0 is an

element of X satisfying d = d(x0,M) > 0. Then there exists x∗ ∈ X ∗

such that

‖x∗‖ = 1, x∗0 (x) = d > 0

and

x∗(x) = 0, for all x ∈ M.
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Fredholm alternative

6. Let N be a subspace of X ∗, and suppose that x∗0 is an element of X ∗

satisfying d = d(x∗0 ,N) > 0. Then there exists x ∈ X such that

‖x‖ = 1, x∗(x0) = d > 0

and

x∗(x) = 0, for all x∗ ∈ N.
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Fredholm Operators

If X is a Banach space and K ∈ K (X ), we have seen that A = I − K has

closed range and that both N(A) and N(A∗) are finite dimensional.

Operators having these properties form a very interesting class and arise

very frequently in applications. They are called Fredholm operators.

P. Sam Johnson Some Results and Examples on Fredholm Alternative 81/84



Fredholm Operators

Definition 13.

Let X ,Y be Banach spaces. An operator A ∈ B(X ,Y ) is said to be

Fredholm operator from X to Y if

1. α(A) = dim N(A) is finite,

2. R(A) is closed in Y ,

3. β(A) = dim N(A∗) is finite.

The set of Fredholm operators from X to Y is denoted by Φ(X ,Y ).

The index of a Fredholm operator is defined as

i(A) = α(A)− β(A).

If X = Y and K is a compact operator on X , then I − K is a Fredholm

operator and i(I − K ) = 0.
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Semi-Fredholm Operators

For A ∈ B(X ,Y ), if R(A) is closed and α(A) <∞ (resp. β(A) <∞),

then A is called an upper semi-Fredholm (resp. lower semi-Fredholm)

operator.

The set of all upper semi-Fredholm operators is denoted by Φ+(X ,Y ) and

the set of all lower semi-Fredholm operators is denoted by Φ−(X ,Y ).

Upper or lower semi-Fredholm operators are called semi-Fredholm

operators.

We shall discuss semi-Fredholm operators in the next lecture.
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